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METHOD OF INVERSE DYNAMICAL SYSTEMS FOR THE RECONSTRUCTION OF INTERNAL 

SOURCES AND BOUNDARY CONDITIONS IN HEAT TRANSFER 

P. M. Kolesnikov, V. T. Borukhov, 
and L. E. Borisevich 

UDC 517.958+517.977 

A method for the inversion of linear dynamical systems is described; it can be used 
to investigate several inverse problems in the reconstruction of boundary conditions 
or internal sources in linear transfer equations. 

The inversion of a dynamical system (DS) involves the reconstruction of unknown input 
signals of the system from the results of measurements of the values of certain operators de- 
fined on the instantaneous states of the DS. In the theory of energy, momentum, and mass trans- 
fer the unknown signals can be both internal and external relative to the investigated effect: 
time-varying amplitudes of heat and mass sources and sinks; boundary transfer conditions, e.g., 
boundary temperatures, boundary heat inputs, time-varying contact resistances, etc. Instru- 
mental inverse problems, whose objective is the reconstruction of a true signal from instru- 
ment readings [i], also belongs to the class of problems of reconstruction of DS inputs. 

In the linear approximation an abstract mathematical model for a broad class of transfer 
processes exists in the form of a differential-operator system of equations 

09 = L~ ~ Bu (t), ~, (0) = ~o, ( 1 )  
Ot 

I~ =0, (2) 

which  i s  s p e c i f i e d  i n a  H i l b e r t  s p a c e  H. The e l e m e n t  wo o f  H i s  the  i n i t i a l  s t a t e  o f  t he  p r o c -  
e s s ;  w : [ 0 ,  | § H i s  t h e  t r a n s f e r  p o t e n t i a l ;  B u ( ' )  i s  t he  s o u r c e  f u n c t i o n ;  ~ i s  a l i n e a r  o p -  
e r a t o r  characterizing the boundary conditions; B:U § H and L:H ~ H are linear operators; U is 
the space of values of the function u(.). The specific choice of the operators L, Z and the 
space H depends on the specific details of the transfer potential, e.g., whether it is in the 
form of a temperature field or an electromagnetic field, and also on the characteristics of 
the medium, the geometry of the system, and the boundary conditions. A natural constraint 
identifying the given class of systems of the form (i), (2) is the fact that the restriction 
A of the operator L onto the set of solutions of the equation Zw = 0 is the generating oper- 
ator of a semigroup eat,. which is strongly continuous at zero [2] (or, in other terminology, 
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a semigroup of class Co). This constraint ensures that the initial/boundary-value problem 
(i), (2) will be well-posed in the sense of Hadamard and, as a rule, holds for mathematical 
transfer models. A solution of the system of equations (i), (2) can also be written with the 
aid of the semigroup eat: 

t 

(t) =eAt~ o @ .~ e A(t-~) Bu (T) d~. (3) 
0 

We c o n s i d e r  the  i n v e r s e  problem of  r e c o n s t r u c t i n g  the  source  f u n c t i o n  u ( ' )  from the  ad -  
d i t i o n a l  i n f o r m a t i o n  y ( ' )  d e f i n e d  by the  r e l a t i o n  

y (t) = R~, (4) 

where R is a linear operator acting from the space H into the space Y of values of the func- 
tion y(~ According to Eqs. (3) and (4), the correspondence between u(') and y(') is speci- 
fied by the equation 

t 

y (t) = ReAtw o + R f eA(t-S)Bu (s) ds. 
0 

Thus, the inverse problem of reconstructing the source function u(t) can be reduced to 
the solution of a Volterra operator equation of the first kind. Equations of this type have 
been investigated in the celebrated work of Lavrent'ev, Romanov, Bukhgeim, et el. (see [3-5] 
and the literature cited therein) in connection with inverse problems of integral geometry. 

We consider an alternative mode of investigation of source-reconstruction inverse prob- 
lems, which involves the method of inversion of linear DS's [6-9]. The limitations of the 
method are associated with the requirement of finiteness of the degree k of ill-posedness of 
the given class of inverse problems. This means that if the output data y(') are analyzed in 
the space of operator functions absolutely continuous together with their derivatives of or- 
der up to and including k -- i, and the input data u(') are analyzed in the space of summable 
operator functions, then the inverse problem is well-posed in the sense of Hadamard. Several 
well-known applied inverse problems, in particular the problems of reconstructing heat fluxes 
on the surface of a body from measurements of the temperature at interior points of the body, 
have an infinite degree of ill-posedness. It should be noted, on the other hand, that nat- 
ural regularization techniques (e.g., differential-difference approximation of the direct prob- 
lem) transform the infinite degree of ill-posedness of the inverse problem into a finite de- 
gree. In this article we ignore this possibility and proceed to investigate the interaction 
between the techniques of natural regularization and inversion of DS's. 

From the systems point:of view [i0, ii], the set of equations (i), (2), (4) describes a 
distributed-parameter DS (which we denote for convenience by the symbol ~), for which u(') 
and y(') are input and output signals, respectively, and w(-) is the state function of the 
DS. In the elementary case where the operator RB is inverted, the inverse of the DS ~-~ has 
the form [6] 

am ( L - - B ( R B ) - ~ R L ) w +  B (RB) -~ ay _ , ~ ( 0 )  = W o ,  

Ot Ot 

fl-l: / ~ = 0 ,  

l u (l) = -- (RB)-~RLw + (RB) -~ - 
Oy___y___ 

Ot 
t 

If the restriction F of the operator L--B(RB)-~RL onto the set of solutions of the equation 
lw = 0 forms the generating operator of a semigroup e Ft of class Co, the solution of the in- 
verse problem of reconstructing the function u(') is written directly in terms of this semi- 
group: 

t ay (s) @ 
u (0 = -- (RB) iRLePtm0 -- (RB)-IR L I e~(~-s>B (RB) I ds + (RB) -~ 

o ~  o---7- (5) 
o 

The procedure developed i n [6] for the structural factorization of distributed-parameter 
DS's can be used to formulate the inverse system when the operator liB is not invertible, but 
a positive integer i exists such that the system of equations 
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RBxo : 0 ,  

RABxo + RBx~ = O, 

RABxo + RAi-IBxl  q . . . .  §  =0 

implies xo = 0. A structural faetorization procedure for the inversion of parabolic systems 
is also given in [12]. 

The structure of the solution (5) is such that it can be used to reconstruct the input 
signal u(t) immediately as information about the input signal y(t) is received, i.e., in real 
time. The ill-posed property inherent in inverse problems is also manifested in the solution 
(5) and is attributable to the need for differentiation of the observed quantity y(t). A sec- 
ond potential source of irregularity is associated with possible instability of the inverse 
DS in the sense of A. M. Lyapunov. The Lyapunov stability of linear DS's is known to depend 
on the position of the spectrum of the system generating operator in the complex plane. A 
procedure for formulation of the so-called reduced inverse DS has been developed [8, 9] with 
allowance for the latter consideration. In the reduced inverse DS the volume of information 
about the initial state of the system is partially curtailed, as is the spectrum of the gen- 
erating operator of the inverse DS. 

The boundary condition (2) is made homogeneous in the formulation of the inverse prob- 
lem of reconstructing the function u(t). From the formal point of view, the homogeneity of 
Eq. (2) does not sacrifice generality, because a standardizing operator [13, 14] can always 
be used to transfer any inhomogeneity of the boundary conditions to the source involved in 
Eq. (I). In formulating the inverse DS, however, it is more practical to deal with the in- 
homogeneous boundary conditions in order to solve the problem of reconstructing transfer bound- 
ary conditions. For example, let us consider the problem of determining the function u(') 
from the system of equations 

t Ow 
I - -  = Lw, w(O) = wo, ( 6 )  
f at 

Y': ~{ 1~;-- u(O, (7) 
y(t) = Rw, (8)  

where, as before, I is the operator of 
of observation of the states of the DS Z. The formal representation of the inverse DS 

I ::  ( 9 )  
I at 

E-I: ! Rw= y(t), (I0) 
I 
[ u (t) = lw (t) (n) 

boundary conditions of the DS E, and R is the operator 

is perfectly obvious and entails the permutation of Eqs. (7) and (8), which induces a reori- 
entation between the input and output of the primary DS E. 

We assume that the restriction F of the operator L onto the set of solutions of the equa- 
tion Rw = 0 is the generating operator of a semigroup e Ft of class Co. From Eqs. (9)-(11) we 
then deduce the solution of the inverse problem 

t 

u (t) = Ieet~o ~,. l ~ er(t-S)BoY (s) ds. (12) 
0 

Here Bo is a standardizing operator, which guarantees equivalence of the system of equations 
(9), (i0) and the system 

aw 
--Lw+B0g(0, w(0)=0, Rw=0 

0t 

The principal difficulties of implementing this approach are encountered in the proof of 
the existence of the semigroup e Ft and its formulation. The operator R can be a point oper- 
ator, a differential or integral operator, an operator of the internal superposition type, or 
mixed, depending on the method of observation of the states of the transfer process. Conse- 
quently, the system of equations (9), (i0) represents an initial/boundary-value problem with 
nonclassical boundary conditions in the general case. Problems of this kind arise in various 
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branches of science and engineering [15-19] and, beginning with the well-known investigations 
of Steklov [20] and Tikhonov [21], have attracted the attention of many authors [16, 22-24]. 
We note the work of Feller [25] and Venttsel' [26], who studied the most general additional 
conditions restricting an elliptic operator to the generating operator of a contractile posi- 
tivity-preserving semigroup of class Co. 

We now consider examples illustrating the application of the method of inverse DS's. 

Let an unbounded flat plate be given, which is thermally irradiated from one side (x = 
s) and is thermally insulated on the other side. The inverse problem calls for the recon- 
struction of the heat flux density u(t) on the surface x = s when the temperature difference 
y(t) = T(s, t) --T(O, t) is measured. The corresponding inverse DS has the form 

s I c (x) Tt = (~ (x) Tx)x, T (x, O) = To (x), (13)  

, ~,(O)T~(O, t ) = O ,  (14) 
E-~: I 

I T(s,  t ) - - T ( 0 ,  t) = ~j(t), (15 )  
! 
t u (t) : - -k(s)  Tx (s, t). (16) 

I t  f o l l o w s  f rom [25, 26] t h a t  t he  semigroup e Ft  c o r r e s p o n d i n g  to  t h e  DS (13 ) - (16 )  be -  
longs to class Co. Consequently, the solution of the inverse problems of reconstructing the 
heat flux density on the surface from differential temperature measurements has the form (12). 
Proceeding as in [27], we can show that if the coefficients c(x) and %(x) satisfy the condi- 
tions c ( x ) - - c ( s ~ x ) ~ O ,  ~,(x)--~,(s--x)-~-O, VxO[O, s], i.e., if the graphs of the functions c(x) and 
%(x) are symmetric about the line x = s/2, the reduced inverse DS 7.-* is described by the sys- 
tem of equations 

1[ c (x) v~ = (~ (x) v~)~, v (x, 0) __@ (r0 (x) - -  r .  (s - -  x)), (17)  
t 

} 20(0, t ) = g ( t ) ,  2v(s, t ) = y ( l ) .  (18) 

u (l) = 2X (0) v~ (0,t) (19) 

s u b j e c t  to  D i r i c h l e t  bounda ry  c o n d i t i o n s  (18) .  Accord ing  to  Eq. (17), f o r  t he  d e t e r m i n a t i o n  
of the function u(') it is sufficient to have the odd (with respect to the axis x = s/2) part 
of the initial temperature distribution in the plate. In the special case of constant coef- 
ficients c and k the solution of the stated inverse problem can be written in the analytical 
form [27] 

u (t) - 2 d i cs dt ( ~+ (s, t~, t) v+ (~) dt~. + ~ ,I a+ (s, s, t - -  T) g (T) d'c), 
t 

c o 

where 
oo 

Q+(x, ~, t ) =  l + 2 ~ . c o s  2krlx 2kn~ cos ~ e x p  
S S 

h =  l 

v +(x) = i v ( ~ '  O) d~. 
s/2 

In the next example we consider the inverse problem of reconstructing the amplitude u(t) 
of a neutron source u(t)exp (-~#x ~ + y2)within the framework of the diffusion approximation 
for a system modeled by the two-dimensional diffusion equation 

: C t = D (C,~ + C~y) - -  bzC + u (t) e -• 

subject to homogeneous Neumann boundary conditions 

G (0, v, t) = G (s, v, t) = cy  (x, 0, t) = G (xl s, t) = 0 

and the  z e r o - v a l u e d  i n i t i a l  c o n d i t i o n  C(x,  y ,  0) = 0. As an a d d i t i o n a l  c o n d i t i o n ,  we s p e c i f y  
the mean concentration of neutrons 

(0 -- %T Z 

in the rectangular domain G={(x, g)'O<~x~h<s, O<~g~<h<s}, 
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According to 

where 

I 

Fig .  1. Numerical  modeling of  the  
i n v e r s e  p r o b l ~  of  r e c o n s t r u c t i o n  
of  the  ~ p l i t u d e  of  a neu t ron  
sou rce :  1) pr imary  f u n c t i o n  u ( t )  = 
e x p ( - t ) ;  2) r e s u l t  of  r e c o n s t r u c -  
t i o n  of function u(t). 

[8, 9], the reduced inverse DS is described by the system of equations 
h h 

vt = m (vx~ + vuy) - -  b2v-- DB (x, Y) K -ahz [ vx (h, y, t) dy i- S vu (x, h, t) dx + (B (x, y) K - ~ ' I )  z (t), 
b o 

v~(O, y, t )=  v~(s, y, t)=v~(x, O, t)=v~(x, s, t)=O, v(x, y, ~ = 0 ,  

h h 

u(t) = - -  DK-ah-2(,[ vx(h, y, t)dy-'r-.f vu(x' h, t)dx) -}- K-'z (0, 
0 0 

(20) 

G 

We have carried out a numerical experiment in order to analyze the stability properties 
of the solution of the given inverse problem. The integrodifferentlal equation together with 
the boundary and initial conditions (20) was solved by a finite-difference method using an 
implicit scheme. The input data for the discrete model of the inverse DS were adopted in the 
form z(ti) = z(ti)(l + 81e), where 0 i are random numbers, --I~0~.I and e = 0.i. The noise- 
infiltrated function 9(t) was differentiated by a derivative regularization procedure [I]. 
Figure 1 shows the results of the numerical calculations for the following parameters of the 
problem: D = I, b = i, • = i, s = I, h = 0.3. 

In conclusion, we consider the inverse problem of reconstructing internal sources of 
steady radiative transfer. We restrict the discussion to a plane-parallel geometrywlth axial 
symmetry of the field. The transfer equation has the form 

We w r i t e  the  boundary c o n d i t i o n s  fo r  Eq. (22) in  the  s t anda rd  form 
Iv(x, ~)lx=o=/~(0, ~), 0 < ~ 1 ,  

(22) 
/~ (~, ~) I~=~. = 17 (do, ~ ,  - -1  < ~ < o .  

The inverse problem calls for reconstruction of u(') on the interval 0<~.x~x0from the results 
of measurements of the integral field characteristic 

1 

y(~)= Ir(~)~[~(~, ~)d~, O<~T~<%. (23) 

To solve the stated inverse problem, we exploit the analogy between the evolution equa- 
tion of the DS and the steady transfer equation (21), based on the analogy of time and the op- 
tical thickness coordinate T. We differentiate the equation of the inverse problem with re- 
spect to T and use the substitution Iv(~,~) = v(T, ~) + p+(~)y(x), where v(T, ~) satisfies 
the identity 
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1 

2r(~)~tv( 'c ,  ~ ) d d l t = O ,  V'cC[O, To] , 
- - t  

and the function p+(p) is determined from the condition 

i 

As a result, we obtain 

(T)+ ( r ,  I ~ ) =  ( r ,  P I , ) §  

where <., ,> denotes the scalar product in the Hilbert space Lz[--l, i], K = <r, B>, 

2 ~ j p ( ~ o ) I , ( ~ ,  ~,)d~d~q. (24) 
~i0 

Assuming that K # 0 and carrying out simple transformations, from Eqs. (21)-(24) we de- 
duce the realization of the inverse system 

09 
p---~T -[- V Pv + BK- I  C r .... Pr, v ) @ 

-+- (Pp+ - -  p+ + B K  -~ ( r - -  Pr, p+ } ) g (~) + (BK -I - -  p+)y (% (25) 

v(T, ~)i~=o= I+ (0, [z) - -  p+ (I~) y (0) for 0~.~l~.~l, 

vU, t*)i~=r0=I~-(%, V)--P+(~)Y('~o) for - - 1 ~ < 0 ,  (26) 

u (T) = K -~ ( r - -  Pr, v 5 + K -z ( r - -  Pr, p+ 5 y + K-~  ('0. (27) 

As in the case of radiative transfer problems, the boundary-value problem (25), (26)can 
be solved by numerical methods. The solution of the inverse problem is expressed in terms of 
the solution of the boundary-value problem (25), (26) by means of Eq. (27). 

NOTATION 

L, B, ~, linear operators; H, Hilbert space; T, temperature field; c, specific heat; ~, 
thermal conductivity; C, concentration of neutrons; D, diffusion coefficient; b, material pa- 
rameter of reactor; I~(T, p), intensity of radiation of frequency ~ at point $ in direction 
8 = cos-1~; p, angular scattering function; L2[--I, i], Hilbert space of functions summable in 
the square on interval [--I, i]. 
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